
P L A N E  O N E - D I M E N S I O N A L  S T A T I O N A R Y  F L O W  

O F  AN I D E A L  C H A R G E D  GAS I N  I T S  OWN E L E C T R I C  

Y u .  A .  N a g e l V  

FIELD 

The plane one-dimensional  flow of an incompress ib le  gas consist ing of a neutral  and a 
charged component in its own electr ic  field has been investigated by Stuetzer [1]. 
S tue tzer ' s  resul ts  are  valid when the e lect ros ta t ic  p r e s s u r e  is small  compared  with the 
hydraulic p r e s su re .  In the present  paper  an analogous problem is considered for  a com-  
press ib le  gas under the more  general  assumption that the p r e s s u r e s  are  comparable .  
Three  cases  are  analyzed: a) the veloci ty  of the relat ive motion of the charged and the 
neutral  par t ic les  is equal to zero;  b) it is nonvanishing but the flow can be assumed to 
be approximately isentropic;  c) a nonisentropic flow, i .e. ,  one cannot ignore i r r eve r s ib le  
losses  due to the relat ive motion of the charged and neutral  par t ic les .  In the f i rs t  two 
cases ,  closed solutions are  obtained. 

1. We consider  a plane flow, unbounded in the direct ion of the coordinates y and z, of a compress ib le  
gas along the ox axis (Fig. 1). Suppose that charges  of one kind (assumed to be positive) are introduced in 
the gas flow in the yoz plane and are  ca r r i ed  by the flow against the space-charge  field to the section 
y. o z and are there neutral ized.  We shall call the yoz plane the emi t te r  and the y _ o z  plane the col lector .  
In writ ing down the sys tem of equations we make the following assumptions:  

p, oVoHo 820 ( s0E: 
Eo ~ i ,  nlo"~~ , 5to ~ o ~ <  t ~o = ~ /  ( i . i )  

(l.l),  
/lO,/2o ~ 90E0, Me 2 - -  l -R - ~ a ~  (7-- t) RP ~ a c ,  (1.2) 

Here 6 i is the density of the i- th component (1 neutral ,  2 charged);  y is the ratio of the specific heats;  
E 0 and H 0 are  the charac te r i s t i c  s t rengths of the e lectr ic  and the magnetic field; s and ~ are the pe rmi t -  
tivity and the magnetic permeabi l i ty ;  ni is the concentrat ion of the i - th  component; p is the hydrostat ic  
p r e s s u r e  of the mixture of components;  p is the e lec t r ic  charge density; P and R are  the Prandtl  and Rey-  
nolds numbers;  V is the modulus of the mean veloci ty  of the mixture of the components;  f l  and f2 are  the 

moduli of the fo rces  fl = FI,  f2 = F2 - p E ,  where F 1 and F 2 are  the volume densi-  
t ies  of the sums of the forces  acting on the neutral  and charged components,  r e -  

7_ spectively; the subscript  zero indicates the charac te r i s t i c  values of the quantities. 

The inequalities (1.1), which indicate that the acting magnetic fo rces  are 
small  compared with the e lectr ic  forces  (and then the part icle  veloci ty depends 
only on the time t and the spatial coordinates) and that the concentration of 
charged par t ic les  is small compared  with that of the neutra ls  (in this case the 
contribution of long-range coll isions is small) ,* enable one in this problem to 

Fig. 1 

Moscow. 
J a n u a r y - F e b r u a r y ,  1971. 

*As follows f rom 1V[axwell's equations of e lec t rodynamics ,  n2/n l ~ sE0/eL0n 1 
(for a tmospher ic  p r e s su re ,  E 0 ~ 107 V / m ,  and L 0 ~ 10 -~ m, this gives n2/n 1 ~ 
10 -8 ) and the magnetic field produced by the motion of the charges  is small  and 
sat isf ies  the f i rs t  of the inequalities (1.1) ff the charac te r i s t i c  veloci ty  is small  
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employ the equations of motion and express ions  for  the t r anspor t  vec to r s  obtained in the C h a p m a n - E n s k o g  
theory  of gaseous  mix tu re s  for  a model  of smooth hard spheres  [2,3]. In accordance  with (1.1), we take 
the concentrat ion,  densi ty,  p r e s s u r e ,  t e m p e r a t u r e ,  and mean  veloci ty  of the mix ture  as a whole in these  
equations equal to the cor responding  quanti t ies  of the neu t ra l  component ,  i .e . ,  n ~ nl, 6 ~ 6 1 ,  p ~ Pi, e tc . ,  
and, taking into account the assumpt ions  (1.2) (the last  two of these de te rmine  the l imi t s  of appl icabi l i ty  of 
the model of an ideal charged  gas) we wri te  the equations of conserva t ion  of the m a s s  of each of the c o m -  
ponents and also the equation of conserva t ion  of the momentum and energy  of the complete  mix tu re  in a 
plane one-dimensional  s t a t ionary  flow in the f o r m  

f o r m  

d . o (1.3) d ~ 6 V =  0, ~rZl = 

6 V  d g  = pE 6V i + = ]E (1.4) 
d x  d x  ' 

Here  i = cpT is  the enthalpy, j is  the densi ty  of the e lec t r i c  cu r ren t ,  and E is  the e lec t r i c  field s t rength.  

In accordance  with [2, 3], the genera l  express ion  for  the cu r r en t  densi ty  vec to r  can be wr i t ten  in the 

j = 9 (v%) = 9V + enD (d 2 - -  k rT  -1 grad T) 

d~= --grad - ~  - - ( ~ -  - - - ~ )  ~g rad  p + p~ (61F 2 --~2F,) 

where  D is the diffusion coefficient;  e i s  the e lec t r i c  eharge  of a par t i c le ;  k T is  the thermodif fus ion ra t io ;  
w2 is the t rue ve loc i ty  of a charged  par t i c le .  

Using the well-known express ion  for  k T [2], es t imat ing  the o r d e r s  of magnitude,  and invoking (1.1) 
and (1.2), we obtain 

ko r~  6~0 F~o poEo ~ e0E0 ~ ao 
~1o'  d~~ po po poLo N L'--o 

( ) ao I &o ~ PoVo + enoDo -~o ~ PoVo + enoDo vogo ]o ~ 9oVo + enoDo ~ Lo 61o po 

so that,  sett ing p = nkT,  we can wri te  the express ion  for  the cur ren t  densi ty  in this case  in the f o r m  

] = p ( V  + bE), b = eD / k T  isthemobility. (1.5) 

To obtain a c losed sys t em,  we must  augment  Eqs.  (1.3)-(1.5) with the Clapeyron equation of s tate  and 
Maxwel l ' s  equation for  the e lec t r i c  field: 

p = 6 B ' T ,  d E / d x  = p / e  (1.6) 

In Eqs.  (1.3)-(1.6) we go over  to d imens ion less  va r i ab l e s :  

x'  = x / L  o, 6' = 6 / 6 o ,  V' = V / V  o, 

etc . ,  and take the cha r ac t e r i s t i c  va lues  of the quanti t ies  except the l inear  scale  equal to the cor responding  
posi t ive va lues  of the v a r i a b l e s  at the e m i t t e r  sect ion,  i .e . ,  V0 = V+, P0 = P+, E0 = E+ = ]E(0) [, e tc . ,  and 
the l inear  s c a l e L  0 = o o  = l such that a t x ' = 0  

V ' = t ,  p ' = l ,  6 ' = t ,  T ' = I ,  E ' = - - i  (1.7) 

We also a s s u m e  that the mobi l i ty  and the pe rmi t t iv i ty  a re  constant ,  b '  = e ' = 1. Then, applying the 
second of the re la t ions  (1.4) to the equation obtained by subtract ing f r o m  it the f i r s t  mult ipl ied by the ve loc -  
i ty and el iminat ing the t e m p e r a t u r e  by means  of (1.6) we wri te  the original  s y s t e m  thus: 

6'V'  -= 1, V'  dV' dz' = p'V'E" 1 V' dp' + VM+~ dx' (1.8) 

compared  with the ve loc i ty  of light V2/c 2 << 1 and high-frequency p r o c e s s e s  a r e  excluded, toVo/L 0 >> V~/c 2 
(L 0 is the cha r ac t e r i s t i c  length). 
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alp' d6' - .  dx" 
-p/ = " ( - - ~ 7 - + Z ( ~ ' - - I ) ~  e P':'~ V' 

]' = p' (V' "t- E' / R~) ---- const, dE'  / dx'  = P' 

(1.9) 

(1.10) 

Here R e is the e lectr ic  Reynolds number [4]. For  what follows, we introduce the notation 

I[~ (T - -  t )  M .  ~ . : C~" X% a('~-i)/~ 

~c t 

t -4" TM* ~ - -  a .  ' a+a% U' ---- - -  f* E '  dx '  a~ = ~/~--+-I)--M7 aV,, as = ~i~ (T + l) M+~aa ' 
{} 

Using the definition of the potential and eliminating f rom the second relat ion of (1.8) the quantities 
p ' ,  V' ,  and p ' ,  we reduce the sys tem of equations (1.8)-(1.10) to the single equation 

(i.ii) 

2 L 1 de kd-a~-) ] ~ L % . . . .  - - b -  t - z z )  

dx" ~ dz'~ j j (1.12) 

Here 

/ 'U 2a+ (7 - -  1) ] ' U '  
W = "~+V+ (I/2V+2 Jr- c T+) = "r ( t  -{- V~ (T - -  i )  M+~) (1 .13)  

Equation (1.12) contains a single tmkaown function, W(x'). In accordance  with (1.10) and (1.11), I is a 
constant and can be taken as a pa rame te r .  

For  an isentropic flow, for which @ - 1)o%/R e << 1 and, in accordance with (1.9), p '  = 6'  T, we ob- 
tain a s imi lar  equation: 

I [ az d W  
T L 7  dx' \ d x ' ~ /  3 + %  3 ~-~ t" ~ - ~ J ,  - ( i  - w )  = o ( 1 . 1 4 )  

2. It is  convenient to begin the solution of Eq. (1.14) by considering the case R e = oo (the charged-  
part icle  mobili ty vanishes,  b = 0). We set a 2 = a 3 = 0 and reduce the o rder  of Eq. (1.14) by means of the 
substitution f = (dW/dxq 2 and we introduce the notation 

u = - 2 /~  t ~ w ;  - ( , a ~  m ) 

Then, the solution of Eq. (1.14) in pa rame t r i c  form can be wri t ten thus: 

(2.1) 

f ? - - i  
w = t - y~ - ~y~-~ ,  ~ _= -~- = a~ + ~ (y - V+ ) + 2 ~  - V -  ( Y - ~ +  u + - 0  (2 .2 )  

To find the relat ion between W and x ' ,  it is  sufficient to determine the function xqy).  The derivative 
of this function is 

dx' : dW ~-I y d] 
d ~  - -  ( - 'dTj  2I~ dy (2.3) 

Now dW/dx  T = ~:f, and, as follows f rom (1.13), the sign of d W / d x '  is opposite to that of E ' .  In the 
emi t te r  region,  E '  < 0, and therefore  dW/dx '  > 0. The field strength ( d E ' / d x '  = p ') is a monotonically in- 
creas ing function (we have assumed above that p '  > 0) and there therefore  exists  a section x '  = x~ < 1, in 
the neighborhood of which E '  changes sign. Taking this into account, el iminating the derivative dW/dx '  
f rom Eq. (2.3), and integrating the la t ter  by par ts ,  we find 

Ix" 

t y . ] / ~ , +  y(-~ + Jl(y§ y~) -  ]l(y~, y) (~J<~'<~) 

W = l - -  y ~ - -  aly 1-Y 

(2.4) 
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Here Ya is  the value of y at the sect ion x '  = x d .  In accordance  with Eqs.  (1.13) and (2.2), Ya can be 
found f rom the equation (P(Ya) = 0, which, using (2.1), we reduce to 

a+=:: I 2r~i'M§ - -  M+• + M,~ -• (• = 2"(/(T + 1)) (2.5) 

Solutions of the t ranscendenta l  equation (2.5) exis t  if  

~+ < 1 + yM+ 2 --  (~" + t) M+ ~ 

At the same  t ime ,  the solut ions,  of which there  a r e  two (Mai and Ma2), sa t i s fy  

(2.6) 

M +  < M ~ I  < l ,  I <M~2 < M +  

The solut ions a r e  identical  when there  is  equali ty in (2.6)~ We obtain a condition for  the choice of 
the roo ts  of Eq. (2.5) as follows. F r o m  the re la t ions  (1.8) 

6' dx'  = ~ ~ (~ - -  M ~) (2.7) 2ct+ 

Since ( -  p ' / 6 ' ) E ' d x '  > 0 in the in terva l  0 -< x '  < x a ' ,  it follows f r o m  Eq. (2.7) that a subsonic  flow is  
acce le ra ted  in this in te rva l ,  w h e r e a s  a supersonic  flow is  dece le ra ted .  Hence 

M a  ==M~I for M+ < t ,  M~ = M a 2  for ~ [ + > 1  

Let us cons ider  the physical  meaning of these roots ;  to this end we turn  to Eqs.  (2.4). In these  equa-  
t ions,  the d imens ion less  cu r ren t  densi ty  I ,  h i ther to  r ega rded  as  an a r b i t r a r y  p a r a m e t e r ,  depends under  
o therwise  equal conditions on the external  e l ec t r i c  r e s i s t a n c e  in the e m i t t e r - c o l l e c t o r  c i rcui t .  In (2.4) we 
set  x '  = 1 (col lector  section) and cons ider  the function W (I). (Here and below the subscr ip t  minus  indi-  
cated quantit ies cor responding  to x '  = 1.) I ts  der iva t ive  is 

dW_ ---_ + ~(~ (M_), if dW_ 
' d i  - -  dz' (M)XO 

and the re fore  the function W (I) a t ta ins  an e x t r e m u m  (maximum) when ~0 (M_) = 0. At the s a m e  t ime,  the 
re la t ions  (1.13), (2.2), and (2.5) show that the field s t rength at the co l l ec to r  van ishes ,  E '  = 0, and M = M a 
and x a '  = 1. 

We shall  say that the case  when ~ ( M )  = 0 is  opt imal  and denote the cor responding  va lues  of W and 
I by Wop t and Iop t. 

If  I < Iop t ,  

d W / d x ' > O  (0~x" < l )  

If  I > Iopt,  

d W / d x ' ~ O  (0~x'..<xJ), d W / d z ' < O  (zJ<x '~<t)  

Now W_ < Wop t ff I ~ Iop t and, in accordance  with Eqs.  (2.4), W_ = 0 when I = 0 or  I = 2Iop t .  Using 
(2.t) ,  this  enables  us  to reduce  Eqs.  (2.4) to 

M+ x" ( ~  M. / ( ,+ i )  + M--W) 
W ~-~ 4z ~ t -}- x[~ (7 - -  I) M+ ~ (2.9)  

TM~/ ~ -k Ma -• = i 4" "~M-~ ~ -- a. 
M§ (2 .10)  

Here  

O(M) f M ~/~' i-}-TM~--(~;MZa}Y-}-Ma-U) Mx ]% 2a~ha+%" 
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,, M• M+ x 
-- -~-~ ]/-Tz + z_v __ (T + l ) dz ' •  • 2 - - " (  

Xa t . 

The sys tem of equations (2.8)-(2.10) is valid if 0 -< I -< Iopt, 0 -< x v -< 1 or  Iopt -< I -~ 2Iopt, 0 _~ x T _< 
If Iopt -< I _< 2Iopt, x d -< x v _< 1, Eq. (2.8) must  be replaced by 

(2.11) 

Equations (2.8)-(2.11) enable us to find the functions W(x') and M(x') if M+, a+, and I are  given. We 
then determine the dependences U'(x ' ) ,  E ' (x ' ) ,  and p ' (x ' ) ,  etc. ,  by means of equations obtained f rom (1.10) 
and (1.13) : 

U ' =  w E ' =  t dW p , =  ~ # W  6 ' =  x1"~ 
a4'hl- '  aaV,i dx'  ~ a4,hi dx,2 , (2.12) 

and the relat ions (1.8), etc. 

We obtain a sys tem of equations for  calculation of the optimal regime f rom (2.8)-(2.11) by setting 
x ' =  l a n d M = M  = M  a :  

lopt = G[t + J~(M+, M_)] 

M+ ~' M~/(v+l) + Wopt  = i - t + , / 2 ( T _ I ) M + :  ( T - - ~  - M~. • 

TMY ! ,c + My• _ t + 7M+" - -  a+ 
2,I x 

(2.13) 

Consider the special case ~+ << 1. In accordance with the last of Eqs.  (2.13), the number M_ can, if 
we use Eqs. (2.13) with c~+ << 1, be represen ted  in the form M = M+(1 + z), where I z] <<1. Expanding ex- 
p ress ions  of the fo rm M u / V ,  M - u ,  etc. ,  in a Taylor  s e r i e s , r e s t r i c t i n g  ourse lves  to small  t e rms  of f i rs t  
order ,  and going over to the dimensionless  quantities U and j, we find 

eE+V+ Uopt - -  E+l T - -  t a .  
]opt l ' - -  --2-- ' W ~  - -  T t + 1/~ (T - -  i )  M+ ~ (2.14) 

Similarly,  setting x'  = 1, in Eqs. (2.6), we obtain 

~ + - , i =  2 
Uopt lopt 

i.e.,  the cur rent -vol tage  charac te r i s t i c  of the emi t t e r - co l l ec to r  interval is a straight line if oz+ << 1. 

3. To determine the pa rame te r  a+ = e E 2 / 2 p + ,  which occurs  in Eqs.  (2.8)-(2.11) and (2.13), we must 
know the field strength E+ at the emit ter  section. In choosing the la t ter  we have two possibi l i t ies:  the cu r -  
rent  density j, and consequently E+, is l imited either by the emiss ive power of the emi t te r  or  the e lec t r ic  
strength En of the medium (for example, when the emissive power is not res t r ic ted) .  In the f i rs t  case ,  one 
can di rec t ly  specify E+ < En. 

In the second case,  the inequality I E(x') I -< En(x') must  hold at any section. Suppose E n is p ropor -  
tional to the p r e s s u r e :  

E,~ (x') _ p (z') 
E~+ p+ (3.1) 

Then the equality [E ] = En will obtain at the section in which [ E / p [  is maximal.  Express ing this 
function by means of (1.11), (1.13), and (2.1) in t e rms  of the number  M and investigating when it has a maxi-  
mum, we find that the maximum cor responds  to the roots  Mbl and Mb2 of the equation 

~z+ = i + T34+ 2 - -  M +  • [ (T  + 1/2) Mo ~'IY + l/2Mb -~] ( 3 . 2 )  

Comparison of this equation with (2.5) shows that Mbl < Mal < 1 and Mb2 < Ma2 > 1. Now it follows 
f rom (2.7) that the flow veloci ty has an ext remum at M = M a (a maximum for subsonic and minimum for 
supersonic flow); we conclude that a physical  meaning attaches to only the root Mbl < 1. Obviously, Mbl 
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can lie either within the interval [M+, M a ] or  [M+, M_] or  without it if Mbt < M+. In the f i rs t  case ,  the 
maximal value of the function I E / P l  in the given interval cor responds  to the section at which M = Mbl; in 
the second case,  to the section at which M = M+, i .e. ,  the emi t te r  plane. Using this resul t ,  express ing 
I E / p  I in t e r m s  of M, and using Eqs. (3.1) and (3.2), we obtain 

I ~ (Mbl ~ M+) (~ = sEn+~ 1 2p§ 
~r = 2 3 ~  [ M._.~. ~• (3.3) 

( i -- Mbi~ ~ Mbi ] (Mbi > M+) 

where Mbl is the smal les t  root  on the hlterval [0, 1] of the equation 

In contras t  to a+, the pa r ame te r  a can be expressed  in t e rms  of the e lectr ic  strength En+ of the gas 
at the emi t te r  plane, i .e. ,  it can be assumed to be known. 

Figure 2 shows Wopt, Iopt, Uopt',  and M as functions of the p a r a m e t e r  vz for  M+ < 1, a > 0.1, and 
= 1.15 obtained by solving Eqs. (2.13) with a computer ;  Fig. 3 shows U' ,  E ' ,  etc. ,  as functions of x '  

found in accordance with Eqs. (2.8)-(2.11) and (3.3) for  the case I = Iopt, ~, = 1.15. The graphs of the func- 
tions U'(x') and E'(x') for  W = 0, I = 2Iopt, and a <<1 are  shown in Fig. 4. 

4. Consider the case  R e ~ .o and (), - 1)vz+/R e << 1. We use (2.2) and replace y by the var iable  

S---- - -2  - 1 ~ _ ~  

In the same way as for  R e = r we obtain 

" l S+ ~zd~4 - -  S ~f~ + Jx (S+, Sa) - -  1/a ][2 (ar - -  ~) a,  (0 < x ' <  xa' ~. 

r." = t  s+ Y ~  + s f ~ + Jl (s +, so) - ~1 (so, s) - 1/, Y 2 ( ~ - ~ ) ~  (~o" < ~" < ~) 

E f 

- -  - -  - -  3 ]  W i S ~ -- ai S1-'~ -- a 3 -~- 1/6 ]/'2a2~ % if x' ~ x a' 

The investigation to establish when W has a maximum leads to the equations S 
= 0, and these,  in conjunction with Eqs.  (2.10) and (4.t), yield 

(4.1) 

= Sa,  q~ (S_) = 0, and 

(4.2) 
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Here  Wopt* and Iopt*  r e f e r  to the case  Re u ~,  and Wop t and Iop t 
r e f e r  as  be fo re  to R e = ~.  The r e l a t i ons  (4.2) a r e  convenient  in that  they  
make  it poss ib le  to r e d u c e  the p r o b l e m  of finding Wopt* and Iop t* to the 
s i m p l e r  p r o b l e m  when Re = ~o At the same  t ime ,  if 1 < Re < ~ (i.e.,  when 
E+ ~ En+ < V+/b ) ,  the p a r a m e t e r  a+  can be found as  in the case  R e = r 
and if  R e = 1 (i.e.,  when En+-> E+ = V + / b ) ,  then ~+ = eV+2/2p+b 2. 

In the spec ia l  ca se  o~+ <<1 and Re = 1, Eqs .  (4.2) and (2.14) y ie ld  

* t V§ Uo~t i v . ,  * i ~ - - 1  ~+ (4 .3)  
]opt = *~ e ~ , = "~ " 7  l,  Wop t 3 T t -~ 1/~ ('l" - -  t) M+ 2 

Fig. 4 
The f i r s t  two of these  e x p r e s s i o n s  w e r e  f i r s t  obtained by S tue tze r  [1] 

in h is  s tudy of  the case  V = cons t .  

We now c o n s i d e r  a non i sen t rop i c  flow. Reducing  the o r d e r  of the o r ig ina l  equat ion (1.12) by m e a n s  5.  

of the subst i tu t ion ~ = I -2 (dW/ dx ' )  2, so lving it fo r  the e x p r e s s i o n  

_~ as ]/7~ / 2 - -  2 d W  / dr , 

ex t r ac t ing  the squa re  roo t ,  and taking the a p p r o p r i a t e  s ign in a c c o r d a n c e  with the init ial  condi t ions ,  we ob-  
tain 

= + - ( 5 . 1 )  de -- u 

Here  

y = a5 + a~ t 
4 --  "~ [(a5 + a~*) 2 --  2~' (t - -  W)lV, 

and ~ l ies  on the in t e rva l  [0, a4]. 

The solut ion of  this  equat ion  cannot  be found expl ic i t ly  as  in the c a s e  of an i s en t rop i c  f low. 
n u m e r i c a l  in tegra t ion ,  it is  convenient  to wr i t e  Eq. (5.1) in such  a f o r m  [see (1.11) and (1.13)]. 

If~b > 0 ,  

a4 

For 

(5.2) 

If  ~b = 0, 

a, r 

0 2 V-2 , 
(5.3) 

In the las t  e x p r e s s i o n ,  the f i r s t  i n t eg ra l  c o r r e s p o n d s  to the p a r t  of the e m i t t e r - c o l l e c t o r  gap whe re  
E '  -< 0 and the second to the p a r t  whe re  E '  > 0. Note that  s ince  W _ 0, we have ~ > a 4 in the second i n t e r -  
va l .  In p a r t i c u l a r ,  it fol lows f r o m  (5.2) and (5.3) that  W is  max ima l  at  ~ = 0, i . e . ,  

Wopt = i ' (  Y 2 a~]Z2 I f * )  d* (5.4) 
0 

As an example  we give the r e s u l t s  ,,~,~ i of ca lcu la t ions  of  W^_, f o r  s e v e r a l  va lues  of R :  fo r  y = 1.1 and 
two va lues  of  M+. In the ca lcu la t ion ,  the va lues  of ~+ w e r e  chosen  such  that  M = 1 fo r  Re 1 = 0: 

Re - I  = 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .0  
M + = 0 . 5 ,  W'op t=0 .154  0 . i 4 9  0.141 0 .132  0 .~22"  0 . 1 i 2  
M+ = 0 . 1 ,  Wopt=O.028 0 . 0 2 4  0 .021  0 . 0 t 8  0 . 0 t 5  0 .012  

6. The quant i ty  W, which  is  the ra t io  of the g e n e r a t e d  e l e c t r i c  e n e r g y  to the total e n e r g y  of the flow 
[see (1.13)], can be i n t e r p r e t e d  as  the tota]~ e f f i c iency  of t r a n s f o r m a t i o n .  In a c c o r d a n c e  with the data  given 
in Fig .  2 and the table,  the e f f i c i ency  fo r  a f ixed value  of  y is l a r g e r ,  the l a r g e r  a re  the p a r a m e t e r  o~ and 
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the,number R e (in pract ice ,  it is sufficient that R e ~ 10). While the last  condition can be satisfied if p a r -  
t icles with low mobility are used as charge c a r r i e r s  [5], it is not easy to increase  the value of the p a r a m -  
eter  ~. For  example, for  a i r  at a tmospher ic  p r e s su re ,  ~ ~ 5 �9 10 -4, and the efficiency is W ~ 10 -4. For  
electronegative substances like CC14 [6], which have a high e lec t r ic  strength,  we al ready have (~ ~ 0.15 
for p+ = 106 N / m  2 and W ~ 2.5 �9 10 -2. A fur ther  increase  of the efficiency is possible if one uses  ma te r i -  
als with a higher e lect r ic  strength than CC14. 
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