PLANE ONE-DIMENSIONAL STATIONARY FLOW
OF AN IDEAL CHARGED GAS IN ITS OWN ELECTRIC FIELD

Yu. A, Nagel’

The plane one-dimensional flow of an incompressible gas consisting of a neutral and a
charged component in its own electric field has been investigated by Stuetzer [1].
Stuetzer's results are valid when the electrostatic pressure is small compared with the
hydraulic pressure. In the present paper an analogous problem is considered for a com-~
pressible gas under the more general assumption that the pressures are comparable.
Three cases are analyzed: a) the velocity of the relative motion of the charged and the
neutral particles is equal to zero; b) it is nonvanishing but the flow can be assumed to
be approximately isentropic; ¢) a nonisentropic flow, i.e., one cannot ignore irreversible
losses due to the relative motion of the charged and neutral particles. In the first two
cases, closed solutions are obtained.

1. We consider a plane flow, unbounded in the direction of the coordinates y and z, of a compressible
gas along the ox axis (Fig. 1). Suppose that charges of one kind (assumed to be positive) are introduced in
the gas flow in the yoz plane and are carried by the flow against the space~charge field to the section
y_o_z_and are there neutralized. We shall call the yoz plane the emitter and the y o_z plane the collector.
In writing down the system of equations we make the following assumptions:
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Here 64 is the density of the i-th component (1 neutral, 2 charged); 7y is the ratio of the specific heats;
Ej and Hj are the characteristic strengths of the electric and the magnetic field; ¢ and 4 are the permit-
tivity and the magnetic permeability; ni is the concentration of the i-th component; p is the hydrostatic
pressure of the mixture of components; p is the electric charge density; P and R are the Prandfl and Rey-
nolds numbers; V is the modulus of the mean velocity of the mixture of the components; f; and f, are the
moduli of the forces f; = Fy, f; = F, — pE, where F; and F, are the volume densi-
ties of the sums of the forces acting on the neutral and charged components, re-
f- spectively; the subscript zero indicates the characteristic values of the quantities.

The inequalities (1.1), which indicate that the acting magnetic forces are
small compared with the electric forces (and then the particle velocity depends
only on the time t and the spatial coordinates) and that the concentration of
charged particles is small compared with that of the neutrals (in this case the

z contribution of long-range collisions is small),* enable one in this problem to
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*As follows from Maxwell's equations of electrodynamies, ny/n; ~ eEy/eLny

4 (2 (for atmospheric pressure, Ey ~ 10° V/m, and Ly ~ 107% m, this gives ny /n; ~
107%) and the magnetic field produced by the motion of the charges is small and
Fig. 1 satisfies the first of the inequalities (1.1) if the characteristic velocity is small
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employ the equations of motion and expressions for the transport vectors obtained in the Chapman—Enskog
theory of gaseous mixtures for a model of smooth hard spheres [2,3]. In accordance with (1.1), we take
the concentration, density, pressure, temperature, and mean velocity of the mixture as a whole in these
equations equal to the corresponding quantities of the neutral component, i.e.,n ¥ n;, 6 & §;, p = py, ete.,
and, taking into account the assumptions (1.2) (the last two of these determine the limits of applicability of
the model of an ideal charged gas) we write the equations of conservation of the mass of each of the com~
ponents and also the equation of conservation of the momentum and energy of the complete mixture in a
plane one-dimensional stationary flow in the form
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Here i=cpT is the enthalpy, j is the density of the electric current, and E is the electric field strength.

In accordance with [2, 3], the general expression for the current density vector can be written in the
form
J=0<wy) = oV +enD(dy — kT grad T)
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where D is the diffusion coefficient; e is the electric charge of a particle; kT is the thermodiffusion ratio;
w, is the true velocity of a charged particle.

Using the well-known expression for kT [2], estimating the orders of magnitude, and invoking (1.1)
and (1.2), we obtain
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so that, setting p = nkT, we can write the expression for the current density in this case in the form
j=p{V-+bE), b=eD/kT is e mobility, a.5)

To obtain a closed system, we must augment Egs. (1,3)-(1.5) with the Clapeyron equation of state and
Maxwell's equation for the electric field:

p=20R'T, dE /dzx =ple (1.6)
In Egs. (1.3)-(1.6) we go over to dimensionless variables:
2 =al/Ly, &8 =6/8, V =V/V,

etc., and take the characteristic values of the quantities except the linear scale equal to the corresponding
positive values of the variables at the emitter section, i.e., Vo = Vi, pp = p+, E¢g = E+ = |E() ], etc., and
the linear scale Ly =o00o_ = [ such that atx'=0

Vi=1, p=1, & =1, T"=1, E =—1 (1.7

We also assume that the mobility and the permittivity are constant, b'= £¢' = 1. Then, applying the
second of the relations (1.4) to the equation obtained by subtracting from it the first multiplied by the veloc-
ity and eliminating the temperature by means of (1.6) we write the original system thus:

W — AV W g L oy
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compared with the velocity of light V3/c? «1 and high-frequency processes are excluded, t,V,/Ly > V}/c?
(Lg is the characteristic length).
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Here Rg is the electric Reynolds number [4]. For what follows, we introduce the notation
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Using the definition of the potential and eliminating from the second relation of (1.8) the quantities
p', V', and p', we reduce the system of equations (1.8)-(1.10) to the single equation
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Equation (1.12) contains a single unknown function, W(x"). In accordance with (1.10) and {1.11),Iis a
constant and can be taken as a parameter.

For an isentropic flow, for which (y ~ 1)a, /Re « 1 and, in accordance with (1.9), p' = &' Y, we ob-

tain a similar equation:
[as dW rn) , (o2 AW AW \-1 a2 4 [dW _
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2, It is convenient to begin the solution of Eq. (1.14) by considering the case Ry = = (the charged-
particle mobility vanishes, b = 0), We set a4 = a3 = 0 and reduce the order of Eq. (1.14) by means of the
substitution f = (AW /dx"? and we introduce the notation
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Then, the solution of Eq, (1.14) in parametric form can be written thus:

W=1—y*—ay", o= f—z =ty 4y — ) + 20, T2 vy, (2.2)
To find the relation between W and x', it is sufficient to determine the function x'(y). The derivative
of this function is

dz’ faw\-1 gy df
dy k da’

2 dy (2.3)

Now dW/dx' = +f, and, as follows from (1.13), the sign of dW/dx' is opposite to that of E!, In the
emitter region, E' < 0, and therefore dW/dx’ >0. The field strength (dE'/dx' = p ") is a monotonically in-
creasing function (we have assumed above that p' > 0) and there therefore exists a section x' = X, <1,in
the neighborhood of which E' changes sign. Taking this into account, eliminating the derivative dW /dx'
from Eq, (2.3), and integrating the latter by parts, we find

=2
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Here y, is the value of y at the section x' = x4. In accordance with Egs. (1.13) and (2.2), y, can be
found from the equation ¢ (y,) = 0, which, using (2.1), we reduce to

oy ==+ yM2— M ((Me"™ + M) =217+ 1) (2.5)

Solutions of the transcendental equation (2.5) exist if

0, <E+rMP—(r+ 1) M7 (2.6)

At the same time, the solutions, of which there are two (M,; and My,}, satisfy

M <M <t, 1 <M, <M,

The solutions are identical when there is equality in (2.6). We obtain a condition for the choice of
the roots of Eq. (2.5) as follows. From the relations (1.8)

! g i1 -1 dV’
— g B e =87 e (1 — M) (2.7)

Since (~p' /0N)E'dx’ > 0 in the interval 0 = x' < x,', it follows from Eq. (2.7) that a subsonic flow is
accelerated in this interval, whereas a supersonic flow is decelerated. Hence

M,=My for M, <1, M,=Mg for Mi>1

Let us consider the physical meaning of these roots; to this end we turn to Egs, (2.4). In these equa-
tions, the dimensionless current density I, hitherto regarded as an arbitrary parameter, depends under
otherwise equal conditions on the external electric resistance in the emitter-collector circuit, In (2.4) we
set X' = 1 (collector section) and consider the function W_(I). (Here and below the subscript minus indi-
cated quantities corresponding to x' = 1.) Its derivative is

dw ..
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and therefore the function W_(I) attains an extremum (maximum) when ¢{(M_) = 0. At the same time, the
relations (1.13), (2.2), and (2.5) show that the field strength at the collector vanishes, E' = 0, and M = M,
and Xa' =1,

We shall say that the case when ¢ (M_) = 0 is optimal and denote the corresponding values of W_ and
I by Wopt and Iopt.

T < Iopts
AW jde' >0 (O<e <l
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W 1de' >0 o< <ay), W /de' <0 (/<o <)

Now W_ < Wopt ifr = Iopt and, in accordance with Egs, (2.4), W_=0whenI=0orlI= 2Iopt. Using
(2.1}, this enables us to reduce Eqgs. (2.4) to
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The system of equations (2.8)-(2.10) isvalidif 0 =I = Iopt, 0 =x' =lorlgpt = I =2Ippt, 0 =x' =
Xq'. W lopt =1 = 2Ippt, X' = X' = 1, Eq. (2.8) must be replaced by

12 = 61+ (S © ) + 7,0, Mo) — 1, (0, D) 2.11)

Equations (2.8)-(2.11) enable us to find the functions W(x" and M(x") if M, o, and I are given. We
then determine the dependences U'(x"), E*(x"), and p'(x"), etc., by means of equations obtained from (1.10)
and (1.13):

P W 4 dW . 1 &w , M \xix
U= B ¥ —amrwe V(5 (2.12)
and the relations (1.8), etc.

We obtain a system of equations for calculation of the optimal regime from (2.8)-(2.11) by setting
x'=1land M=M_=M,:

Lopt = G4+ Jy (M, M)
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Consider the special case @4 «1, Tn accordance with the last of Egs. (2.13), the number M_ can, if
we use Egs. (2.13) with ¢, <« 1, be represented in the form M_ = M4(1 + z), where |z| «1. Expanding ex-
pressions of the form M”‘/V, M™%, etc., in a Taylor series, restricting ourselves to small terms of first
order, and going over to the dimensionless quantities U and j, we find
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Similarly, setting x' = 1, in Egs. (2.6), we obtain

v + _II_ =2
opt ’opt
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i.e., the current-voltage characteristic of the emitter-collector interval is a straight line if o, « 1.

3. To determine the parameter o, = SE%r/Zer , which occurs in Egs. (2.8)-(2.11) and (2.13), we must
know the field strength E, at the emitter section. In choosing the latter we have two possibilities: the cur-
rent density j, and consequently E_, is limited either by the emissive power of the emitter or the electric
strength En of the medium (for example, when the emissive power is not restricted). In the first case, one
can directly specify E. < Ep.

In the second case, the inequality |E(x")| = E,(x') must hold at any section. Suppose Ejp, is propor-
tional to the pressure:

=k (3.1)

Then the equality |E|= Ep will obtain at the section in which |E /p| is maximal. Expressing this
function by means of (1.11), (1.13), and (2.1) in terms of the number M and investigating when it has a maxi-
mum, we find that the maximum corresponds to the roots My, and My, of the equation

O‘+=1+T]W+2“M+x[(7+1/2)belY+l/2Mb_x] (3.2)

Comparison of this equation with (2.5) shows that Mp; < Mgy < 1 and Mpy < Mg, > 1. Now it follows
from (2,7) that the flow velocity has an extremum at M = M, (a maximum for subsonic and minimum for
supersonic flow); we conclude that a physical meaning attaches to only the root Mp; < 1. Obviously, My
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can lie either within the interval [My, M,] or [My, M_] or without it if My, < M,. In the first case, the
maximal value of the function |E /p| in the given interval corresponds to the section at which M = My,; in
the second case, to the section at which M = M., i.e,, the emitter plane, Using this result, expressing

| E/p|in terms of M, and using Egs. (3.1) and (3.2), we obtain

202
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where My, is the smallest root on the interval [0, 1] of the equation

L a4, 1, (5 2) b — 4] =

In contrast to @, the parameter & can be expressed in terms of the electric strength E, . of the gas
at the emitter plane, i.e., it can be assumed to be known,

Figure 2 shows Wopt, Iopts Uppt', and M_ as functions of the parameter « for My < 1, @ > 0.1, and
v = 1.15 obtained by solving Egs. (2.13) with a computer; Fig. 3 shows U', E!, ete., as functions of x'
found in accordance with Egs. (2.8)-(2.11) and (3,3) for the case I = Topts ¥ = 1.15. The graphs of the func-
tions U'(x") and E'x" for W= 0,1= 2Iopts and ¢ «< 1 are shown in Fig, 4.

4. Consider the case Rg # = and (Y ~ 1)a+/R, <1. We use (2.2) and replace y by the variable

— P w}_.

I S, Vae—SVe+11(S,, S) — s V2 (@ —¢)ay O<= <0y
S, YV + SV +T1(5, 8 = T1(Sar )= V20:—9)as / <a'<t)

W=1—8—a, 8 —a,4-Ys V2,9, i 'Sz @.1)

The investigation to establish when W_ has a maximum leads to the equations 8 = S,, ¢(S) = 0, and
E! =0, and these, in conjunction with Eqs. (2.10) and (4.1), yield

Io;t = Iopt — G/ (ZRE), Wo;t = Wopt — 1/3Gza"‘/*Rg_l (4.2)
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107 a5 Here Wopt * and Iopt* refer to the case Re = =, and Wopt and Iopt
. refer as before to Ry = . The relations (4.2) are convenient in that they
04 J ¢z make it possible to reduce the problem of finding Wopt* and Iopt* to the
simpler problem when Re = «, At the same time, if 1 < Rg < = (i.e., when
¢ - N0 E; = Ept < V4/b), the parameter o can be found as in the case Rg = «,
' 71 and if Rg = 1 (i.e., when Ey,+ = E; = Vi /b), then oy = eV.2 /2p+b2.
{4
24 In the special case o, «1 and Re = 1, Egs. (4.2) and (2.14) yield
-10 R A 4w, s 4 r—1 a,
Jopt = P € B Uopt—’g“‘rly Wopt‘—? T 1+1/2(T—1)[ﬂ+2 (4-3)

Fig. 4 The first two of these expressions were first obtained by Stuetzer [1]

in his study of the case V = const.
5. We now consider a nonisentropic flow. Reducing the order of the original equation (1.12) by means
of the substitution 3 =I2(dW /dx')z, solving it for the expression
ay V972 —24dW /dy,
extracting the square root, and taking the appropriate sign in accordance with the initial conditions, we ob-

tain

JW as - -
W:tﬂ/il/w_} 6.1)

Here

Y= Bt Ly g — 20 (1 — W)

and P lies on the interval [0, a,].

The solution of this equation cannot be found explicitly as in the case of an isentropic flow. For
numerical integration, it is convenient to write Eq. (5.1) in such a form [see (1.11) and (1.13)].
Iy >0,

Gy

W=§ (¥ — 355 Vo) a (5.2)

[

[V}

If ¢ =0,

ay

W=§ (Y—

In the last expression, the first integral corresponds to the part of the emitter-collector gap where
E' = 0 and the second to the part where E' > 0, Note that since W = 0, we have ¢ > a, in the second inter-
val, In particular, it follows from (5.2) and (5.3) that W_ is maximal at § = 0, i.e.,

¢
yr V) a = (Y gy ) (5.9

ﬂ:/ - 1/@) dp (5.4)

W,,ptzi‘(y_z
0

As an example we give the results of calculations of Wopt for several values of Rgi for y = 1.1 and
two values of M;. In the calculation, the values of o were chosen such that M_ =1 for Rgi =0:

Rl=0 0.2 0.4 0.6 0.8 1.0
M,=0.5, W,, =045 01449 0.141 0.132 0.422° 0.142
M,=0.4, W,,=0.028 0.02 0.021 0.018 0,015 0.012

6. The quantity W, which is the ratio of the generated electric energy to the total energy of the flow
[see (1.13)], can be interpreted as the total efficiency of transformation. In accordance with the data given
in Fig. 2 and the table, the efficiency for a fixed value of y is larger, the larger are the parameter o and

25



the -number Rg (in practice, it is sufficient that R > 10). While the last condition can be satisfied if par-
ticles with low mobility are used as charge carriers [5], it is not easy to increase the value of the param-
eter @, For example, for air at atmospheric pressure, @ ~ 5 - 10™%, and the efficiency is W ~ 1074, For
electronegative substances like CCl, [6], which have a high electric strength, we already have o~ 0,15
for py = 10° N /m®> and W ~ 2.5 - 1072, A further increase of the efficiency is possible if one uses materi-
als with a higher electric strength than CCl,.

1 should like to thank I, V. Bespalov and Yu. M, Trushin for their interest and helpful comments.
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